

Giacomo Cordoni¹

Collaborators: Marcella Di Criscienzo², Anna F. Marino³, Antonino P. Milone¹

¹Dipartimento di Fisica e Astronomia "Galileo Galilei", Università degli Studi di Padova ²INAF, Osservatorio Astronomico di Roma ³Research School of Astronomy & Astrophysics, Australian National University

http://progetti.dfa.unipd.it/GALFOR/

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Old Galactic Globular Clusters a few years ago

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
•000				

Old Galactic Globular Clusters a few years ago

Simple Stellar Population

Globular Clusters were considered the prototypes of Simple Stellar Populations. All stars have

- → same age
- → same metallicity
- → same Helium abundance

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Giacomo Cordoni (University of Padua)

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Multiple Stellar Populations

Old Globular clusters host Multiple Stellar Populations: two possible scenarios

- → Multiple star formation episodes: 2^{nd} generation of stars born out of the material polluted by 1^{st} generation massive stars
- → Coeval stellar populations : unknown physical mechanism

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Multiple Stellar Populations

Old Globular clusters host Multiple Stellar Populations: two possible scenarios

→ Multiple star formation episodes: 2^{nd} generation of stars born out of the material polluted by 1^{st} generation massive stars

→ Coeval stellar populations : unknown physical mechanism

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Multiple Stellar Populations

Old Globular clusters host Multiple Stellar Populations: two possible scenarios

- → Multiple star formation episodes: 2^{nd} generation of stars born out of the material polluted by 1^{st} generation massive stars
- → Coeval stellar populations : unknown physical mechanism

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000	000000	000	0000000	

Implications

Giacomo Cordoni (University of Padua)

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Multipopulations importance

Why study Mutiple Populations

- How did Globular Clusters form ?
- Which is their contribution to the mass of the Galactic Halo ?
- Which is their contribution to the Re-ionization ?

→Understanding Multiple Populations may address these questions

But .

Globular Clusters formed ~ 13 Gyr ago \ldots

It is challenging to understand the mechanisms responsible for the formation of multipopulations in Globular Clusters →We need younger objects !!

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000				

Multipopulations importance

Why study Mutiple Populations

- How did Globular Clusters form ?
- Which is their contribution to the mass of the Galactic Halo ?
- Which is their contribution to the Re-ionization ?

→Understanding Multiple Populations may address these questions

But . . .

Globular Clusters formed ${\sim}13$ Gyr ago ...

It is challenging to understand the mechanisms responsible for the formation of multipopulations in Globular Clusters

→We need younger objects !!

Old Globular Clusters

Young Clusters

Age Spread

Discussion 0000000 Conclusions 0

Magellanic Clouds Clusters

"Young" Clusters

Globular Clusters in the Magellanic Clouds span a wide age range. Young < 1 Gyr and Intermediate-age (1-2Gyr) Globular Clusters in the Magellanic Clouds may help us finding the answers

Giacomo Cordoni (University of Padua)

Padova, ICYAA 2018

June 10, 2018 6 / 22

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
	00000			

Synthetic CMDs of Simple Stellar Populations

Giacomo Cordoni (University of Padua)

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
	000000			

Observed CMDs of Young Clusters

Giacomo Cordoni (University of Padua)

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
	00000			

Observed CMDs of Young Clusters

Giacomo Cordoni (University of Padua)

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
	00000			

Observed CMDs of Young Clusters

Giacomo Cordoni (University of Padua)

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
	000000			

Observed CMDs of Intermediate-age Clusters

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
	000000			

Interpretation of the complex CMDs

Big issues

- Where do these features come from?
- Are there Multiple Populations in Magellanic Clouds clusters?
- Are Young Clusters the younger counterpart of Old Globular Clusters?

Old Globular Clusters

Young Clusters

Age Spread

Discussion

Conclusions 0

Magellanic Clouds Clusters

Multiple Stellar Generations

Young and Intermediate-age Magellanic Clouds clusters host Multiple Stellar Generations with different age. →The eMSTO is due to stars with different age !!!

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
		000		

 Large sample of analyzed clusters: 27 (and counting) Magellanic Clouds Young clusters, from *The survey of Multiple Populations in Magellanic Clouds clusters (Milone et al., 2009 and series).*

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
		•00		

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
		000		

- Large sample of analyzed clusters: 27 (and counting) Magellanic Clouds Young clusters, from *The survey of Multiple Populations in Magellanic Clouds clusters (Milone et al., 2009 and series).*
- **II)** Determination of the age distribution from Turn-Off stars

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
		000		

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
		000		

- Large sample of analyzed clusters: 27 (and counting) Magellanic Clouds Young clusters, from *The survey of Multiple Populations in Magellanic Clouds clusters (Milone et al., 2009 and series).*
- II) Determination of the age distribution from Turn-Off stars
- III) Build-up of the Delta age vs. Age relation

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
		000		

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000		000	••••••	0

Challenge

Multiple star formation episodes are unlikely to reproduce the observed trend !!

Other physical mechanisms must be responsible for the observed spread

Which mechanisms?

Rotation

• What about rotation?

• What if these clusters host coeval stellar populations with different rotation velocities?

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000		000	••••••	0

Challenge

Multiple star formation episodes are unlikely to reproduce the observed trend !!

Other physical mechanisms must be responsible for the observed spread

Which mechanisms?

Rotation

- What about rotation?
- What if these clusters host coeval stellar populations with different rotation velocities?

0000	000000	000	000000	0
Rotation scenario				

Effects of Rotation

Giacomo Cordoni (University of Padua)

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
			000000	
Rotation scenario				

Model analysis

What if ...

 \ldots the Turn-Off spread in the simulation of a cluster with coeval stellar populations with different rotation rates is interpreted as a physical age spread ?

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
0000	000000	000	0000000	
Rotation scenario				

Model analysis

Giacomo Cordoni (University of Padua)

Padova, ICYAA 2018

June 10, 2018 18 / 22

Rotation scenario				
0000	000000	000	0000000	
Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions

Rotational relation

Giacomo Cordoni (University of Padua)

Rotation scenario					
			0000000		
Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions	

Comparison with observations

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
Rotation scenario	000000			

Residual Age Spread

Old Globular Clusters	Young Clusters	Age Spread	Discussion	Conclusions
				•

Conclusions

Facts

- → Young GCs host coeval populations with different rotation velocity
- \rightarrow Rotation is responsible for the eMSTO in the CMDs
- → Multiple populations of Young and Old GCs are likely due to different phenomena

Open questions

- → How did these objects form?
- → Did stars form with the same rotation velocity? If so, did they brake?
- → Which physical mechanism is responsible for the braking process?